Converter Using Silicon Carbide Schottky Diode

نویسنده

  • Y. S. Ravikumar
چکیده

Silicon carbide (SiC) is the perfect cross between silicon and diamond. The crystal lattice of SiC is identical to silicon and diamond, but, exactly half the lattice sites are occupied by silicon atoms and half by carbon atoms. Like-diamond siC has electronic properties superior to silicon, but, unlike diamond it is also manufacturable. The thermal leakage current (dark current) in SiC is sixteen orders-of magnitude lower as well. As temperature increases, the leakage current increases, but, the temperature where the leakage current would disrupt circuit operation is over 1000 °C in SiC, compared to about 250 °C in silicon. The SiC electronic revolution began in the early 1990's when single-crystal wafers became commercially available for the first time. During the intervening years, many different electronic devices have been demonstrated in SiC, with performance often exceeding the theoretical limits of silicon. These include pin diodes, MOS field-effect transistors (MOSFETs), metal-semiconductor field-effect transistors (MESFETs), and bipolar transistors (BJTs), as well as specialized devices such as CCD imagers, Schottky diodes, static induction transistors (SITS) and impact-ionizationavalanche-transittime (MATT) microwave oscillators. These early digital logic gates and linear elements are based on n-channel MOS technology, but, quickly followed by more sophisticated CMOS integrated circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dc-dc Converter Using Silicon Carbide Schottky Diode

Silicon carbide (SiC) is the perfect cross between silicon and diamond. The crystal lattice of SiC is identical to silicon and diamond, but, exactly half the lattice sites are occupied by silicon atoms and half by carbon atoms. Likediamond SiC has electronic properties superior to silicon, but, unlike diamond it is also manufacturable. The thermal leakage current (dark current) in SiC is sixtee...

متن کامل

Ac-Dc-Dc Converter Using Silicon Carbide Schottky Diode

Silicon carbide (SiC) is the perfect cross between silicon and diamond. The crystal lattice of SiC is identical to silicon and diamond, but, exactly half the lattice sites are occupied by silicon atoms and half by carbon atoms. Like-diamond SiC has electronic properties superior to silicon, but, unlike diamond it is also manufacturable. The thermal leakage current (dark current) in SiC is sixte...

متن کامل

Interleaved DC-DC Boost Converter with SiC Devices and Low-Capacitive Inductors

This paper describes a four-leg interleaved DC-DC boost converter built on the basis of Silicon Carbide (SiC) devices (Metal-Oxide Semiconductor Field-Effect Transistors—MOSFETs and Schottky diodes) and improved, low-capacitive magnetic components. A combination of wide-bandgap semiconductors capable of operating at elevated switching frequencies and an interleaving technique brings substantial...

متن کامل

Graphite based Schottky diodes on Si, GaAs, and 4H-SiC

Todd Schumann, Sefaattin Tongay, Arthur F. Hebard Department of Physics, University of Florida, Gainesville FL 32611 This article demonstrates the formation of Schottky diodes on silicon (Si), gallium arsenide (GaAs), and 4H-silicon carbide (4H-SiC) using the semimetal graphite. The forward bias characteristics follow thermionic emission theory, and the extracted Schottky barrier heights closel...

متن کامل

Parameter Extraction Software for Silicon Carbide Schottky, Merged Pin Schottky and Pin Power Diode Models

A software program for on-state parameter extraction is presented for the realization of a high quality model for SiC Schottky, Merged PiN Schottky, and PiN Power diodes based on McNutt and Mantooth's Comprehensive SiC Diode model [ 1 ].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013